•

Development of the Heat – Health Vulnerability Tool in North Carolina

Chip Konrad

Carolina Integrated Science & Assessments (CISA) team

NOAA Southeast Regional Climate Center

University of North Carolina at Chapel Hill

<u>Outline</u>

- 1) Background
- 2) Research to Identify Relationships between Temperature and Heat Illness.
- 3) Description of Heat Health Vulnerability Tool
- 4) Our Engagement with Stakeholders and What we Learned

Collaborators on Heat Illness Project

Marked Variation in Heat Illness Across North Carolina

2. Determining Relationships between Temperature and Heat Illness

North Carolina Disease Event Tracking and Epidemiologic Tool (NC DETECT)

ED visit linked to the daily maximum temperature at the nearest weather station.

HRI rates are adjusted for the frequency of temperature observations \rightarrow **Average daily HRI ED Visits Per 100,000 people**

More ED visits on abnormally hot (95 to 100F) days but marked decrease in HRI rates at the highest temperatures (greater than 100F)

Average Daily Frequency of ED visits by Degree vs. Temperature

Rural Urban Commuting Areas (RUCA) Classification

Metropolitan

Rural Metropolitan

Rural Town

Rural Isolated

Most Urban

Most Rural

Detailed Rural Urban Commuting Areas Differences

Rural Urban Commuting Areas -- Demographic

Gender Differences

3. The Heat-Health Vulnerability Tool

Web-Based Heat-Health Vulnerability Tool (HHVT)

Inputs NWS maximum temperature forecasts and translates these values into predictions of the number of cases of heat illness.

- County or region level
- Demographic/socioeconomic group (e.g. adult males, those in poverty etc.)

4. Our Engagement with Stakeholders and What We Learned

Two User Engagement Sessions

- Webinar on 8/1/2015 in which tool was introduced
- Face-to-face meeting on 9/1/2105

A. Challenges with the interface

i. Clickable map

A. Challenges with the interface (continued)

NC Heat Health Vulnerability Tool

ii. Interpreting models

A. Challenges with the interface (continued)

iii. Providing plotting options

B. Interpreting the model output

i. For average visits and the baseline, what are the units "expected visits per capita"?

ii. What is "baseline"?

Express as a departure from normal in units of percent

Simply express as the "normal" or "normal number of visits"

c. How can level of threat posed by the heat be effectively expressed?

Air Quality Index for Ozone

AIR QUALITY INDEX		
Index Values (Conc. Range)	Air Quality Descriptors	Cautionary Statements for Ozone
0 – 50 (0-60 ppb)	Good	No health impacts are expected when air quality is in this range.
51 – 100 (61-75 ppb)	Moderate	Unusually sensitive people should consider limiting prolonged outdoor exertion
101 – 150 (76-104 ppb)	Unhealthy for Sensitive Groups	Active children and adults, and people with respiratory disease, such as asthma, should limit prolonged outdoor exertion
151 – 200 (105-115 ppb)	Unhealthy	Active children and adults, and people with respiratory disease, such as asthma, should avoid prolonged outdoor exertion; everyone else, especially children should limit prolonged outdoor exertion.
201 – 300 (116-374 ppb)	Very Unhealthy	Active children and adults, and people with respiratory disease, such as asthma, should avoid all outdoor exertion; everyone else, especially children, should limit outdoor exertion.

Much interest in translating the daily forecast into a threat level using a color scale from 1-5:

Work with public health professionals to develop an appropriate scale.

D. "Its not the heat. It's the humidity!"

http://marshallramsey.com/?p=11410

PLAN: Launch Version 2.0 of the Heat-Health Vulnerability Tool in May with the following upgrades:

- 1) Work off of predictions of the daily maximum heat index
- 2) Add a **threat scale** to each forecast
- 3) Refine interface and provide help menus and better explanations

Heat Health Vulnerability Tool: http://sercc.com/hhvt

Acknowledgements

Maggie Sugg – Assistant Professor at Appalachian Sate University
EPA Science to Achieve Results Fellowship (STAR) for Graduate Environmental Study
NSF Doctoral Dissertation Improvement Grant
North Carolina Department of Health & NC-CDC BRACE program

North Carolina Public Health and Climate Change Work Group Ashley Hiatt and Ryan Boyles a the North Carolina State Climate Office

The NC DETECT Data Oversight Committee does not take responsibility for the scientific validity or accuracy of methodology, results, statistical analyses or conclusions presented.

